FOLIA HISTORICO NATURALIA MUSEI MATRAENSIS 1998–99 23: 5–15

Hidrotermás turmalin Bükkszentlászlóról

FEHÉR BÉLA

ABSTRACT: (Hydrothermal tourmaline from Bükkszentlászló, Bükk Mts., Hungary) – Near Miskolc-Bükkszentlászló in the Bükk Mountains in Hungary the Middle Triassic rhyolite tuffs are cut by quartz-feldspar veins. Tourmaline, Mn-oxides and phosphate minerals occur in these veins beside the rock forming minerals. This paper contains mineralogical (optical, X-ray diffraction and electron microprobe) examinations of tourmaline. On the basis of the examinations schorl represents the tourmaline group in this locality. The schorl precipitated from iron- and boron-rich hydrothermal solutions which are likely associated with the rhyolitic magmatism.

Key words: tourmaline, schorl, Bükk Mts. (Hungary)

Összefoglalás

Miskolc–Bükkszentlászló határában a középső-triász riolittufát kvarc-földpát telérek szelik át. Ezekben a telérekben a kőzetalkotó ásványok mellett turmalin, Mn-oxidok és foszfátásványok fordulnak elő. Jelen cikk a turmalinról készült ásványtani (optikai, röntgendiffrakciós és elektron-mikroszondás) vizsgálatokat tartalmazza. A vizsgálatok alapján a turmalin csoportot ezen a lelőhelyen a sörl képviseli. A sörl vas- és bórgazdag hidrotermás oldatokból vált ki, mely oldatok valószínűleg a riolitos magmatizmushoz köthetők.

Bevezetés

A Bükk hegység DK-i részén, Lillafüred és Bükkszentkereszt között változatos összetételű, középső-triász korú rétegvulkáni összlet helyezkedik el. A képződményeket a terület patakjai által létrehozott természetes feltárásokban tanulmányozhatjuk a legkönnyebben.

Egy ilyen feltárás található Bükkszentkereszt közelében, de még Miskolc–Bükkszentlászló közigazgatási határán belül, az ún. Hősök forrásától kiinduló patak mentén (1. ábra), melynek nevét a térképek nem jelzik. Az itt feltárt képződmény a középső-triász ladin emeletébe tartozó erősen préselt, zöld színű riolittufa (kvarcporfírtufa). Ezt a kőzettestet korábban az Óhutai Diabáz Formációba sorolták (BALOGH, 1980), az újabb rétegtani megfontolások azonban ezt a formációnevet megszüntetik, s a képződményt kérdőjelesen a Szentistvánhegyi Metaandezit Formációba helyezik (PELIKÁN, 1993). Ezt a préselt riolittufát helyenként kvarc-földpát erek és telérek járják át, s ezekhez köthető a turmalin megjelenése is. A korábbi szakirodalomban (pl. SZENTPÉTERY, 1931, 1939, 1952; SZABÓ, 1978) már történt említés turmalinról hasonló litológiai környezetben, de ásványtani vizsgálatokat nem végeztek.

 ábra. A vizsgált turmalin-előfordulás helyszínrajza (a lelőhelyet sraffozott terület jelzi) Fig. 1. Sketch map of the investigated tourmaline occurrence (the locality is indicated by shade-lines)

Alkalmazott vizsgálati módszerek és a vizsgált minták

A bükkszentlászlói turmalin megjelenését a miskolci Herman Ottó Múzeum Leica WILD M420 típusú mikroszkópjával vizsgáltuk. Az ásvány optikai tulajdonságait a róla készült csiszolaton a Miskolci Egyetem Ásvány- és Kőzettani Tanszékén, Leitz Metalloplan típusú polarizációs mikroszkóppal határoztuk meg.

A röntgen-diffraktométeres vizsgálatok szintén a Miskolci Egyetem Ásvány- és Kőzettani Tanszékén készültek, TUR–M 62 típusú röntgen-diffraktométerrel, Co-csővel, 40 kV gyorsítófeszültség és 30 μA csőáram mellett.

Az elektron-mikroszondás mérések az Eötvös Loránd Tudományegyetem (Budapest) Kőzettan-Geokémiai Tanszékén készültek, EDAX 9800 energiadiszperzív detektorral felszerelt AMRAY 1830I pásztázó elektronmikroszkóppal. A gyorsítófeszültség 15 kV, a mintaáram 2 μ A, a detektálási idő 100 másodperc volt. A méréshez felhasznált standardok: természetes kaersutit, diopszid, albit és ortoklász.

A vizsgált minták a miskolci Herman Ottó Múzeum ásványtárában találhatók meg, 25 163 és 25 164 leltári számok alatt.

Vizsgálati eredmények

A bükkszentlászlói turmalin makroszkóposan fekete színű, általában mm alatti hosszúságú, maximum 2 mm-es tűs-szálas kristályokból álló, 1-2 cm-es fészkeket (2. ábra), ill. ereket (3. ábra) alkot a kvarc-földpát telérekben. Ezek a fészkek bársonyos, selymes fényűek.

2. ábra. Fekete turmalinfészkek egy kvarc-földpát telérdarabban. A példány hosszúsága 6,3 cm. Fotó: Kulcsár G.
Fig. 2. Black tourmaline nests in a quartz-feldspar vein. Lenght of the specimen is 6.3 cm. Photo: G. Kulcsár

 ábra. Fekete turmalinerek egy kvarc-földpát telérdarabban. A példány hosszúsága 7,5 cm. Fotó: Kulcsár G.
 Fig. 3. Black tourmaline veinlets in a quartz-feldspar vein. Lenght of the specimen is 7.5 cm. Photo: G. Kulcsár

Egy ilyen fészket közelebbről megvizsgálva látható, hogy benne a turmalinszálak orientáltan helyezkednek el (4. ábra). Más esetekben a tűs kristályok különállóan, sugaras elrendeződésben jelennek meg a kvarcban (5. ábra).

A turmalinos mintáról mikroszkópi vékonycsiszolat is készült. A c-tengellyel párhuzamos metszetekben (6. és 7. ábrák) a turmalinra jellemző hosszú prizmás kristályok mutatkoznak, melyek mért maximális hossza 2,1 mm. A kristályokon jól láthatók a {0001} lappal közel pár-

 ábra. Párhuzamos turmalinszálakból felépülő üregkitöltés. Képszélesség: 1 cm. Fotó: Szakáll S.

Fig. 4. Cavity filling with parallel tourmaline fibers. Width of the picture is 1 cm. Photo: S. Szakáll

5. ábra. Tűs turmalinkristályok kvarcban. Képszélesség: 7 mm. Fotó: Szakáll S. Fig. 5. Acicular tourmaline crystals in quartz. Width of the picture is 7 mm. Photo: S. Szakáll

huzamos, szabálytalan lefutású harántrepedések. Ebben a metszetben a turmalin erős pleokroizmust mutat, mely a vasban gazdag turmalinokra jellemző: a c-tengellyel párhuzamosan világos drappsárga, míg a melléktengelyek irányában sötét kékeszöld vagy zöldeskék, a vastagabb metszetekben majdnem fekete színű. A kristályok színzónásságot nem mutatnak, kioltásuk egyenes. A c-tengelyre, azaz a kristályok megnyúlására merőleges metszetek (8. ábra)

6. ábra. Prizmás turmalinkristály földpátos mátrixban. 1 nikol, képszélesség: 0,7 mm Fig. 6. Prismatic tourmaline crystal in feldspar matrix. 1 Nicol, width of the picture is 0.7 mm

7. ábra. Párhuzamosan elhelyezkedő prizmás turmalinkristályok földpátos mátrixban.
1 nikol, képszélesség: 1,7 mm
Fig. 7. Parallel prismatic tourmaline crystals in feldspar matrix. 1 Nicol, width of the picture is 1.7 mm

 8. ábra. Háromszög és ditrigon körvonalú turmalinkristályok a c-tengelyre merőleges metszetben, földpátos mátrixban. 1 nikol, képszélesség: 0,7 mm
 Fig. 8. Tourmaline crystals with trigonal and ditrigonal outlines perpendicular to the c axis, in feldspar matrix. 1 Nicol, width of the picture is 0.7 mm

a turmalin trigonális szimmetriájának megfelelően háromszög vagy ditrigon körvonalúak. A kristályok vastagsága általában 0,03–0,06 mm között van, de legföljebb 0,12 mm-es. Ebben a metszetben a turmalin zöld színű, pleokroizmus és színzónásság nem észlelhető.

Az ásványról röntgen-diffraktométeres vizsgálatot is szerettünk volna készíteni, ehhez azonban előbb megfelelő – azaz tiszta – szeparátum kellett a turmalinból. Ennek elkészítése nem volt könnyű feladat, mivel a turmalin igen szorosan összenőtt a földpáttal és a kvarccal. A munkát a Miskolci Egyetem Eljárástechnikai Tanszékén végeztük el. Először 0,05–0,2 mm-es méretűre őröltük le a turmalinos kőzetmintát, majd bromoform segítségével sűrűségük szerint választottuk szét a turmalint (S = 3,0–3,2 g/cm³) a kvarctól és földpáttól (S = 2,6–2,8 g/cm³).

A turmalinszeparátumról készült röntgendiffraktogramot a 9. ábrán láthatjuk, feltüntetve a legerősebb intenzitású csúcsok d-értékeit, melyet táblázatos formában (I. táblázat) is közlünk, összehasonlítva a drávitra és sörlre közölt JCPDS-standardokkal. Mint látható, a bükkszentlász-lói turmalinra kapott eredmények a drávit röntgenadataihoz állnak közelebb; bázisreflexióik megegyeznek, míg a sörl 2,91 Å-ös 100-as csúcsa hiányzik a bükkszentlászlói mintáról. A röntgenadatokból kiszámoltuk az elemi cella méretét: $a_0 = 16,00$ Å, $c_0 = 7,23$ Å, melyből a tengelyarány: $c_0/a_0 = 0,452$. Ha a kapott értékeket ábrázolnánk az EPPRECHT (1953) által szerkesztett a_0-c_0/a_0 ill. c_0-c_0/a_0 diagramokon, azok a drávitra közölt értékekhez esnének közel.

Összességében elmondhatjuk, hogy a röntgenfelvétel egyértelműen igazolta a turmalinszerkezetet, s a kapott eredmények a drávitra közölt értékekhez esnek közel. Azonban azt is el kell mondanunk, hogy a szilárd oldatot alkotó ásványsorok – mint amilyen a sörl-drávitsorozat is – tagjai röntgendiffrakciós vizsgálatokkal nem különíthetők el egymástól. Arra a kérdésre, hogy a bükkszentlászlói anyag a turmalincsoporton belül melyik ásványfajt képviseli, csak a teljes kvantitatív kémiai elemzés adhat választ.

turmalin (Bükkszentlászló)		drávit (Ausztria) JCPDS 14–76		sörl (szintetikus) JCPDS 22–469	
d [Å]	Ι	d [Å]	Ι	d [Å]	Ι
6,35	30	6,38	30	6,35	18
5,00	15	4,98	25	5,00	20
4,64	20	4,60	18	4,62	14
4,26	50	4,22	65	4,22	35
4,00	90	3,99	85	4,00	55
3,50	50	3,48	60	3,48	45
2,97	55	2,96	85	2,95	45
				2,91	100
2,59	100	2,58	100	2,58	70
2,41	20	2,39	20		
2,35	10	2,34	20	2,35	20
2,05	30	2,05	20	2,04	45
1,92	15	1,92	35	1,97	20
				1,79	65
				1,63	70
1,60	15	1,59	20	1,61	20

I. táblázat: A bükkszentlászlói turmalin röntgendiffrakciós adatai Table I: X-ray data of tourmaline, Bükkszentlászló

A bükkszentlászlói turmalin kristálykémiája

A turmalincsoportra az alábbi, általános kristálykémiai képlet írható fel:

XY₃Z₆(BO₃)₃Si₆O₁₈(OH)₄.

A turmalincsoporton belül az ásványfajokat az alapján különítjük el, hogy a fenti képletben szereplő három kationpozíció (X, Y és Z) milyen elemekkel van betöltve. Ennek alapján jelenleg 12 turmalinfajt ismerünk, de mivel a lehetséges – elméleti – fajok (szélső tagok) száma elég nagy, még bizonyosan bővülni fog ez a kör.

Annak meghatározásához, hogy a bükkszentlászlói turmalin melyik fajt képviseli, elektron-mikroszondás vizsgálatot készítettünk, melynek eredményeit a II. táblázatban tüntettük fel. Mivel a fenti módszerrel a kis atomsúlyú elemek, jelen esetben a bór és a hidrogén nem mérhetők, ezért ezeket számított értékekkel helyettesítettük.

A B_2O_3 -tartalmat úgy határoztuk meg, hogy a 31 anionra számolt képletre 3 bóratom essen. Ezt azért tehettük meg, mert a korábbi vizsgálatok kimutatták, hogy a turmalin szerkezetében a bórt más ion nem helyettesíti és általában mindhárom pozíciója be van töltve (DIETRICH, 1985; GRICE és SCOTT ERCIT, 1993). Mivel azonban a bór igen kismértékben helyettesítheti a tetraéderes pozícióban lévő szilíciumot, a számítással kapott eredményeink csak nagyon kicsi negatív hibával lehetnek terheltek. Ez utóbbi lehetőségnek azonban nincs nagy valószínűsége a minták szokatlanul magas SiO₂-tartalma miatt.

A táblázatban szereplő víztartalmakat szintén számítással határoztuk meg úgy, hogy a 31 anionból 4 (OH) legyen. Ezzel egyrészt azt feltételeztük, hogy a fluor nem épül be a szerkezetbe a hidroxil helyére, másrészt pedig nem számoltunk az O \rightarrow OH helyettesítéssel (az ún. "buergerit-helyettesítéssel") sem. A fluor elhanyagolását főleg az teszi lehetővé, hogy magasabb fluortartalom a Li-turmalinokra (elbaitokra) jellemző (Němec, 1969). A turmalin Naés F-tartalma között pozitív korreláció (azaz a Na mennyiségével általában nő az ásvány F-tartalma is) miatt ugyan számolhatunk némi fluorbeépüléssel a bükkszentlászlói minták esetében is, azonban kristályszerkezeti okokból a 4 OH-pozíciónak maximum a 25%-át foglalhatja el F, ám szintetikus F-dráviton végzett kísérletek szerint a valóságban ez az érték max. 20% (Robert et al., 1997). Az O \rightarrow OH helyettesítés akkor lehet számottevő, ha az Y-pozícióba jelentősebb mennyiségű három vegyértékű elem épül be.

II. táblázat: A bükkszentlászlói turmalin vegyelemzési adatai súlyszázalékban (elemző: Török K.) Table II: Chemical analyses of the Bükkszentlászló tourmaline in weight per cent (analyst: K. Török)

	(1)	(2)	(3)	(4)		
SiO ₂	38,08	38,86	39,02	38,29		
TiO ₂	0,13	0,14	0,46	0,89		
B ₂ O ₃ *	10,46	10,54	10,49	10,30		
Al ₂ O ₃	29,62	29,39	27,85	27,27		
FeO**	15,06	13,41	14,79	13,80		
MnO	0,12	0,23	0,20	0,03		
MgO	2,15	2,99	2,89	3,04		
CaO	0,08	0,16	0,20	0,20		
Na ₂ O	2,51	2,71	2,90	2,45		
K ₂ O	0,03					
H ₂ O*	3,61	3,63	3,61	3,55		
összesen	101,85	102,06	102,41	99,82		
* a sztöchiometriából számolya – calculated from the stochiometry: ** összes Fe mint FeO – total Fe as FeO						

A fenti elemzési adatokból így a következő szerkezeti képleteket írhatjuk fel:

 $1. \ (Na_{0,81}Ca_{0,02}K_{0,01})_{\Sigma=0,84} \ (Fe_{2,10}Mg_{0,53}Mn_{0,02}Ti_{0,02})_{\Sigma=2,67} \ Al_{5,81} \ (BO_3)_3 \ Si_{6,34} \ O_{18} \ (OH)_4$

2. $(Na_{0.87}Ca_{0.03})_{\Sigma=0.90}$ (Fe_{1.85}Mg_{0.74}Mn_{0.03}Ti_{0.02})_{$\Sigma=2.64$} Al_{5.71} (BO₃)₃ Si_{6.41} O₁₈ (OH)₄

3. $(Na_{0.93}Ca_{0.04})_{\Sigma=0.97}$ (Fe_{2,05}Mg_{0,71}Ti_{0,06}Mn_{0,03})_{$\Sigma=2,85$} Al_{5,44} (BO₃)₃ Si_{6,47} O₁₈ (OH)₄

 $4. \ (Na_{0,80}Ca_{0,04})_{\Sigma=0,84} \ (Fe_{1,95}Mg_{0,77}Ti_{0,11})_{\Sigma=2,83} \ Al_{5,43} \ (BO_3)_3 \ Si_{6,47} \ O_{18} \ (OH)_4.$

Annak eldöntéséhez, hogy az adott ionok melyik kristályszerkezeti pozíciót foglalják el, POVONDRA (1981) és HAWTHORNE (1997) vizsgálatait használtuk fel.

A kapott eredményekből az látszik, hogy a bükkszentlászlói turmalin a sörl-drávit sorozatba tartozik. A sörl (amelyben a fenti szerkezeti képlet szerint X = Na, $Y = Fe^{2+}$, Z = Al) és a drávit (X = Na, Y = Mg, Z = Al) a két leggyakoribb turmalinfaj. E két ásvány korlátlanul elegyedhet egymással, más szóval szilárd oldatot képeznek. Mivel az Y pozícióban Fe²⁺ > Mg, az ún. "50% szabály" értelmében ásványunk a turmalincsoporton belül a sörl fajt képviseli. Az ásvány öszszetételi helyzetét jól szemléltethetjük a sörl-drávit-tsilaisit háromszög-diagramban (10. ábra).

A kapott elemzések, ill. szerkezeti képletek összehasonlításából kiderül, hogy a minta különböző helyeiről készített elemzések számottevő eltérést nem mutatnak. Ez alátámasztja a mikroszkópi vizsgálatok eredményét, azaz az optikai zónásság hiánya a kémiai zónásság hiányában is megnyilvánul.

Genetikai következtetések

A bükkszentlászlói kvarc-földpát telérekből az előzőekben ismertetett turmalin képződése hidrotermás folyamatokhoz kapcsolódik. A hidrotermás oldatokra a magas vas- és bórtartalom volt jellemző. A turmalinszemcsék kémiai zónásságának hiánya arra utal, hogy a

9. ábra. A bükkszentlászlói turmalin röntgen-pordiffrakciós felvétele Fig. 9. X-ray powder diffraction pattern of tourmaline from Bükkszentlászló

10. ábra. A bükkszentlászlói turmalin összetételi helyzetének ábrázolása a sörl (Y = Fe²⁺) – drávit (Y = Mg) – tsilaisit (Y = Mn²⁺) háromszög-diagramban, ahol X = Na és Z = Al. Fig. 10. Representation of compositional setting of Bükkszentlászló tourmaline in the schorl (Y = Fe²⁺) – dravite (Y = Mg) – tsilaisite (Y = Mn²⁺) terner diagram, where X = Na and Z = Al.

hidrotermás oldat összetételi fluktuációja nem volt jelentős, s ez azt is valószínűsíti, hogy a turmalin kiválása gyorsan lezajlott.

Az még tisztázásra vár, hogy a fent említett hidrotermás oldat mely magmás testhez köthető. Ennek eldöntéséhez a legfontosabb támpontot az adná, ha sikerülne a bór forrását megtalálni. Sajnos a vizsgálati területünkön lévő magmás kőzetekről közölt kémiai elemzésekben (pl. BALOGH, 1964; PANTÓ, 1961) nem közölnek adatokat a bórtartalomra vonatkozólag. Mindazonáltal kézenfekvőnek látszik a hidrotermás oldatot magához a riolitos magmatizmushoz kötni, mivel magmagenetikai okokból a savanyú magmák rendelkeznek a sörl képződéséhez elegendő B- és Fe-tartalommal.

Genetikailag figyelemre méltó lehet, hogy lelőhelyünk közelében, a lillafüredi Y-tárónál egy másik boroszilikát, a ferroaxinit jelenlétét mutatták ki a közelmúltban (SZAKÁLL és FÖLDVÁRI, 1995). Érdekes az is, hogy az axinit-csoportnak a vasgazdag tagja fordul elő, hasonlóan turmalinunkhoz, melyet szintén a vasban gazdag sörl képvisel. A két előfordulás genetikai összefüggései még tisztázatlanok, további kutatást igényelnek.

A kvarc-földpát telérek egyéb ásványai

A teléreket alkotó földpáton és kvarcon, valamint a fent tárgyalt turmalinon kívül a telérekben csak kis mennyiségű mangán-oxidos fázis található, melyek a turmalintól elkülönülten alkotnak fészkeket a telérekben, s ez utóbbitól a felületes szemlélő nehezen tudja megkülönböztetni fekete aggregátumait. Ezeknek a mangán-oxidoknak a fajszintű besorolása még várat magára, csupán SZABÓ (1978) említ néhány nevet röntgendiffrakciós vizsgálatok alapján, melyek közlésétől az adatok nagyfokú bizonytalansága miatt eltekintünk. E mangánásványok mellett különböző foszfátok (elsősorban apatit) jelenlétét is kimutatták.

Az eddigi vizsgálatok alapján nincs bizonyíték arra, hogy a turmalin és a mangános-foszfátos kiválások között bármilyen genetikai kapcsolat lenne.

Köszönetnyilvánítás

A szerző köszönetét fejezi ki Török Kálmánnak (ELTE Geofizikai Tanszék) az elektronmikroszondás elemzésekért, Namesánszky Károlynak (ME Ásvány- és Kőzettani Tanszék) pedig a röntgen-diffraktométeres felvételért. A röntgenvizsgálathoz szükséges szeparátum elkészítéséért Bőhm Józsefnének (ME Eljárástechnikai Tanszék) tartozom köszönettel. A turmalin-mintákról készült makrofotók Kulcsár Géza (Herman Ottó Múzeum), míg a binokuláris mikroszkópi fotók Szakáll Sándor (Herman Ottó Múzeum) munkái.

Irodalom – References

- BALOGH, K. (1964): A Bükkhegység földtani képződményei MÁFI évkönyve, 48, 245–719.
 BALOGH, K. (1980): A magyarországi triász korrelációja Általános Földtani Szemle, 15, 5–67.
- DIETRICH, R. V. (1985): *The tourmaline group*. Van Nostrand Reinhold Co., New York. p. 300.

- EPPRECHT, W. (1953): Die Gitterkonstanten der Turmaline Schweizerische Mineralogische und Petrographische Mitteilungen, 33, 481–505.
- GRICE, J. D., T. SCOTT ERCIT (1993): Ordering of Fe and Mg in the tourmaline crystal structure: The correct formula Neues Jahrbuch für Mineralogie, Abhandlungen, 165, 245–266.
- HAWTHORNE, F. C. (1997): The crystal chemistry of tournaline: current status Tourmaline 1997, International Symposium on Tournaline, Nové Město na Moravě, Czech Republic. Abstracts, 34–35.
- NĚMEC, D. (1969): Fluorine in tourmalines Contributions to Mineralogy and Petrology, 20, 235–243.
- PANTÓ, G. (1961): Mezozóos magmatizmus Magyarországon MÁFI évkönyve, 49, 785–799.
- PELIKÁN, P. (1993): "Óhutai Diabáz Formáció" (Auct.). In: Haas J. (szerk.): Magyarország litosztratigráfiai alapegységei. Triász. MÁFI-kiadvány, Budapest. p. 123.
- POVONDRA, P. (1981): The crystal chemistry of tournalines of the schorl-dravite series – Acta Universitatis Carolinae, Geologica, 25, 223–264.
- ROBERT, J–L., J–P. GOURDANT, R. L. LINNEN, O. ROUER, P. BENOIST (1997): Crystal-chemical relationships between OH, F and Na in tourmalines – Tourmaline 1997, International Symposium on Tourmaline, Nové Město na Moravě, Czech Republic. Abstracts, 84–85.
- SZABÓ, I. (1978): Ércindikációk-ritkafém anomáliák a Darnó-övezet Bükkhegység-i és Uppony-i szakaszán – Kézirat. MÉV Adattár, J–1133.
- SZAKÁLL, S., FÖLDVÁRI, M. (1995): Magyarország új ásványai III. Ferroaxinit és krizokolla Miskolc–Lillafüredről – Földtani Közlöny, 125, 433–442.
- SZENTPÉTERY, ZS. (1931): A Bagolyhegy quarzporphyrja, Lillafürednél Acta Chemica, Mineralogica et Physica, Szeged. 2, 81–108.
- SZENTPÉTERY, S. v. (1939): Sauere Ganggesteine aus dem Bükkgebirge (Ungarn) Acta Chemica, Mineralogica et Physica, Szeged. 7, 48–63.
- SZENTPÉTERY, ZS. (1952): Az Alsóbagolyhegy kvarcporfirja a Bükkhegységben Földtani Közlöny, 82, 368–373.

FEHÉR Béla Herman Ottó Múzeum, Ásványtár H-3525 MISKOLC, Kossuth utca 13.